Magnetic fields from the second order perturbation theory

Shohei Saga (Nagoya university)

Based on Phys.Rev.D91,123510(2015), Collaborator: K.Ichiki, K.Takahashi, N.Sugiyama

Magnetic fields are observed ubiquitously even on large scales.

- \triangleright galaxy, cluster scales $\sim O(10^{-6})$ Gauss,
- Intergalactic scales (or voids?) > $O(10^{-22})$ Gauss

Cosmological magnetic fields = **seed fields** + dynamo mechanism

Question.

Can we generate **seed fields** in the standard cosmology?

→ 2nd order perturbation theory

Magnetic fields from the second order perturbation theory

Shohei Saga (Nagoya university)

Harrison mechanism

Primordial plasma in the early universe

- → Thomson scattering induces the relative velocity between protons and electrons
- \rightarrow The rotational currents induce magnetic fields.

2nd order Slip tern

$$\frac{dB^{i}}{dt} = \frac{4\sigma_{T}\rho_{\gamma}^{(0)}a}{3e} \epsilon^{ijk} \left[\frac{1}{2} \delta v_{\gamma {\rm b}j,k}^{(2)} - \delta_{\gamma,j}^{(1)} \delta v_{\gamma {\rm b}k}^{(1)} - \frac{3}{4} \left(v_{\rm e}^{(1)} \Pi_{\gamma j}^{(1)l} \right)_{,k} \right]$$

Slip term Anisotropic stress

Magnetic fields from the second order perturbation theory

Shohei Saga (Nagoya university)

Magnetic field spectrum at cosmological recombination:

Remark

- Bump at $k \sim 0.5 h \mathrm{Mpc^{-1}}$
- Non-trivial cancellation!